五年級數學知識點整理歸納
小學數學是基礎教育的一個重要學科,在發(fā)展和培養(yǎng)學生的抽象邏輯思維方面起著極為重要的作用。下面小編為大家?guī)砦迥昙墧祵W知識點整理歸納,希望大家喜歡!
五年級數學知識點
1.橫排叫做行,豎排叫做列。確定第幾列一般是從左往右數,確定第幾行一般是從前往后數。
2.用有順序的兩個數表示出一個確定的位置就是數對,確定一個物體的位置需要兩個數據。
3.用數對表示位置時,先表示第幾列,再表示第幾行,不要把列和行弄顛倒。
4.寫數對時,用括號把列數和行數括起來,并在列數和行數之間寫個逗號把它們隔開,寫作:(列,行)。
5.數對的讀法:(2,3)可以直接讀(2,3),也可以讀作數對(2,3)。
6.一組數對只能表示一個位置。
7.表示同一列物體位置的數對,它們的第一個數相同;表示同一行物體位置的數對,它們的第二個數相同。
【巧記位置】
表示位置有絕招
一組數據把它標
豎線為列橫為行
列先行后不可調
一列一行一括號
逗號分隔標明了
在方格紙上,物體向左或向右平移,行數不變,列數等于減去或加上平移的格數;
物體向上或向下平移,列數不變,行數等于加上或減去平移的格數。
【切記】
1、數對:由兩個數組成,中間用逗號隔開,用括號括起來。括號里面的數由左至右分別為列數和行數,即“先列后行”。
2、作用:一組數對確定一個點的位置,經度和緯度就是這個原理。
例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。
3、在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。
如:數對(3,2)表示第三列,第二行。
4、數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線,(有一個數不確定,不能確定一個點)。
圖形左右平移行數不變,圖形上下平移列數不變。
五年級數學必備知識點
第一單元《小數乘法》知識點
一、小數乘整數(利用因數的變化引起積的變化規(guī)律來計算小數乘法)
知識點一:
1、計算小數加法先把小數點對齊,再把相同數位上的數相加
2、計算小數乘法末尾對齊,按整數乘法法則進行計算。
知識點二:
積中小數末尾有0的乘法。先計算出小數乘整數的乘積后,積的小數末尾出現0,要再根據小數的性質去掉小數末尾的0。如:3.60“0”應劃去
知識點三:
如果乘得的積的小數位數不夠要在前面用0補足,再點上小數點。如0.02×2=0.04
知識點四:
計算整數因數末尾有0的小數乘法時,要把整數數位中不是0的最右側數字與小數的末尾對齊。
思考:
小數乘整數與整數乘整數有什么不同?
1、小數乘整數中有一個因數是小數,所以積一般來說也是小數。
2小數乘法中積的小暑部分末尾如有0可以根據小數的基本性質去掉小數末尾的0而整數乘法中是不能去掉的。
二、小數乘小數
知識點一:
因數與積的小數位數的關系:因數中共有幾位小數,積中就有幾位小數。
知識點二:
小數乘法的一般計算方法:
先按整數乘法算出積,再給積點上小數點(看因數中一共有幾位小數,就從積的右邊起輸出幾位,點上小數點。)乘得的積的小數位數不夠要在積的前面用0補足,在點小數點。
知識點三:
小數乘法的驗算方法
1、把因數的位置交換相乘
2、用計算器來驗算
三、積的近似數
知識點一:
先算出積,然后看要保留數位的下一位,再按四舍五入法求出結果,用約等號表示。
知識點二:
如果求得的近似數所求數位的數字是9而后一位數字又大于5需要進1,這是就要依次進一用0占位。如6.597保留兩位為6.60
四、連乘、乘加、乘減
知識點一:
小數乘法要按照從左到右的順序計算
知識點二:
小數的乘加運算與整數的乘加運算順序相同。先乘法,后加法
整數乘法的交換律、結合律和分配律,對于小數乘法也適用。
五、簡便運算
整數乘法的交換律、結合律和分配律,對于小數乘法也適用
計算連乘法時可應用乘法交換律、結合律將幾位整數的兩個數先乘,再乘另一個數,計算一步乘法時,可將接近整十、整百的數拆成整十整百的數和一位數相加減的算式,再應用乘法分配律簡算。
對于不符合運算定律的算式,有些通過變形也可以應用。
乘法分配律也可以推廣到相應的減法。
第二單元《小數除法》知識點
1、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。如:2.6÷1.3表示已知兩個因數的積2.6與其中的一個因數1.3,求另一個因數的運算。
小數除法的計算方法:
計算除數是整數的小數除法,按整數除法的計算方法去除,商的小數點要和被除數的小數點對齊,整數部分不夠除,商0,點上小數點,繼續(xù)除;如果有余數,要添0再除。
計算除數是小數的除法,先把除數轉化成整數,除數的小數點向右移動幾位,被除數的小數點也要向右移動幾位,位數不夠時,在被除數的末尾用0補足,然后按照除數是整數的小數除法進行計算。
2、取近似數的方法:
取近似數的方法有三種,①四舍五入法;②進一法;③去尾法
一般情況下,按要求取近似數時用四舍五入法,進一法、去尾法在解決實際問題的時候選擇應用。
取商的近似數時,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似數。沒有要求時,除不盡的一般保留兩位小數。
3、循環(huán)小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環(huán)小數。依次不斷重復出現的數字,叫做這個循環(huán)小數的的循環(huán)節(jié)。
4、循環(huán)小數的表示方法:
一種是用省略號表示,要寫出兩個完整的循環(huán)節(jié),后面標上省略號。如:0.3636……1.587587……
另一種是簡寫的方法:即只寫出一組循環(huán)節(jié),然后在循環(huán)節(jié)的第一個數字和最后一個數上面點上圓點。如:12.
5、有限小數:小數部分的位數是有限的小數,叫做有限小數。
6、無限小數:小數部分的位數是無限的小數,叫做無限小數。
第三單元《觀察物體》知識點
1、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面。
2、正面、側面、后面都是相對的,它是隨著觀察角度的變化而變化。通過觀察、想象、猜測,培養(yǎng)空間想象力和思維能力,能正確辨認從正面、側面、上面觀察到的簡單物體的形狀。
3、構建空間想象力:
(1)、將兩個完全一樣的正方體并排放,要求想象畫出以不同角度看到的樣子(強調左右面是重合,故只能看見一個正方形)。
(2)、將一個正方體和圓柱體并排放,要求想象畫出從不同角度看到的樣子。
4、動手操作,思維拓展
用5個小正方體擺從正面看到的圖形(你能擺出幾種不同的方法)。(有多少種不同擺法,最少要用多少個小正方體,最多只能用多少個小正方體。)
第四單元《簡易方程》知識點
1、用字母表運算定律。
加法交換律:a+b=b+a加法結合律:a+b+c=a+(b+c)
乘法交換律:a×b=b×a乘法結合律:a×b×c=a×(b×c)
乘法分配律:(a±b)×c=a×c±b×c
2、用字母表示計算公式。
長方形的周長公式:c=(a+b)×2;長方形的面積公式:s=ab
正方形的周長公式:c=4a;正方形的面積公式:s=a
3、讀作:x的平方,表示:兩個x相乘。
2x表示:兩個x相加,或者是2乘x。
4、①含有未知數的等式稱為方程。
②使方程左右兩邊相等的未知數的值叫做方程的解。
③求方程的解的過程叫做解方程。
5、把下面的數量關系補充完整。
路程=(速度)×(時間)速度=(路程)÷(時間)時間=(路程)÷(速度)
總價=(單價)×(數量)單價=(總價)÷(數量)數量=(總價)÷(單價)
總產量=(單產量)×(數量)單產量=(總產量)÷(數量)
數量=(總產量)÷(單價)
工作總量=(工作效率)×(工作時間)
工作效率=(工作總量)÷(工作時間)
工作時間=(工作總量)÷(工作效率)
大數-小數=相差數大數-相差數=小數小數+相差數=大數
一倍量×倍數=幾倍量幾倍量÷倍數=一倍量
幾倍量÷一倍量=倍數
被減數=減數+差減數=被減數-差加數=和-另一個加數
被除數=除數×商除數=被除數÷商因數=積÷另一個因數
第五單元《多邊形面積》知識點
1、長方形面積=長×寬字母公式:s=ab
長方形周長=(長+寬)×2字母公式:c=(a+b)×2
2、正方形面積=邊長×邊長字母公式:s=或者s=a×a
正方形周長=邊長×4字母公式:c=4a或者c=a×4
3、平行四邊形面積=底×高字母公式:s=ah
4、三角形面積=底×高÷2字母公式:s=ah÷2
5、梯形面積=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2
6、計算圓木、鋼管等的根數:(頂層根數+底層根數)×層數÷2
7、等底等高的平行四邊形面積相等。等底等高的三角形面積相等。
等底等高的三角形和平行四邊形面積關系:三角形的面積是平行四邊形面積的一半,平行四邊形的面積是三角形面積的2倍。
8、組合圖形:轉化成已學的簡單圖形,通過加、減進行計算。
第六單元《統(tǒng)計與可能性》知識點
1、平均數=總數量÷總份數
2、中位數的優(yōu)點是不受偏大或偏小數據的影響,用它代表全體數據的一般水平更合適
第七單元《數學廣角》知識點
1、數不僅可以用來表示數量和順序,還可以用來編碼。
2、郵政編碼:由6位組成,前2位表示省(直轄市、自治區(qū)),前3位表示郵區(qū),前4位表示縣(市),最后2位表示投遞局(所)。
3、身份證號碼:由18位組成:
(1)前1、2位數字表示:所在省份的代碼;
(2)第3、4位數字表示:所在城市的代碼;
(3)第5、6位數字表示:所在區(qū)縣的代碼;
(4)第7~14位數字表示:出生年、月、日;
(5)第15、16位數字表示:所在地的派出所的代碼;
(6)第17位數字表示性別:奇數表示男性,偶數表示女性;
(7)第18位數字是校檢碼:用來檢驗身份證的正確性。校檢碼可以是0~9的數字,有時也用x表示。
五年級數學知識點總結
1、 分數:把單位1平均分成若干份,表示這樣的一份或幾份的數,叫做分數。
2、 分母:表示平均分的份數。分子:表示取出的份數。
3、 分數單位:把單位1平均分成若干份,表示這樣的一份或幾份的數,叫做 分數。表示其中的一份的數,叫做這個分數的分數單位。
4、 真分數:分子小于分母的分數叫做真分數。真分數小于1。
5、 假分數:分子大于或等于分母的分數,叫做假分數。假分數都大于或等于1。
6、 帶分數:由整數和真分數組成的分數叫做帶分數。
7、 假分數化成帶分數:用分子除以分母,商是帶分數的整數部分,余數是帶分數分數部分的分子,分母不變。
8、 整數化成假分數:用指定的分母做分母,用整數與分母的積做分子。
9、 帶分數化成假分數:用帶分數的整數部分乘分母加分子做分子,分母不變。
10、 質因數:每個合數都可以寫成幾個質數相乘的形式,其中每個質數都是這個合數的因數,叫做這個合數的質因數。
11 把一個合數用質因數相乘的形式表示出來,叫做分解質因數。 如12=223
12、幾個數公有的因數叫做這幾個數的公因數。其中最大的一個,叫做它們的最大公因數。
13 互質:兩個數的公因數只有1,這兩個數叫做互質。 互質的規(guī)律: (1) 相鄰的自然數互質; (2) 相鄰的奇數都是互質數; (3) 1和任何數互質; (4) 兩個不同的質數互質 (5) 2和任何奇數互質。 質數與互質的區(qū)別:質數是就一個數而言,而互質是指兩個或兩個以上的數之間的關系;這些數本身不一定是質數,但它們之間最大的公因數是1,如8和9.
14、 幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數。
15、 求最大公因數,最小公倍數的方法 關系 最大公因數 最小公倍數 倍數關系
16、 分子分母互質的分數叫最簡分數,或者說分子分母的公因數只有的1的 分數是最簡分數。
17、 約分:把一個分數的分子和分母同時除以公因數,分數值不變,這個過 程叫做約分。計算結果通常用最簡分數表示。
18、 通分:把異分母分數分別化成同分母分數,叫通分。通常用最小公倍數 做分數的分母較簡便。
19、 如何比較分數的大?。?分母相同時,分子大的分數大; 分子相同時,分母小的分數大; 分子分母都不同時,通分再比。
20、 分數基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分 數大小不變。
21、分數的意義兩種解釋:①把單位1平均分成4份,表示這樣的3份。 ②把3平均分成4份,表示這樣的1份。